ON THE 9-PQINT DIFFERENCE FORMULA FOR LAPLACE'S EQUATION

by
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1. Intvoduction.

One method of solving boundary value problems for elliptic differential
equations is to replace the differential equation by a difference equation. Im
case of the two-dimensional Laplace equation this is most frequently performed
by aid of the so-called 5-point formula, which for a square net of mesh
length h involves a truncation error of order h*. A number of techniques
for the rapid solution of the resulting system of algebraic equations has
been developed, a.o. by Young (overrelaxation method based upon the prop-
Erty A of the matrix) [1,27] and by Rachford (alternating-direction methods)

3].

The present paper is concerned with the investigation of the 9-point
formula and its comparison with the 5-point formula. The truncation error
of the 9-point formula is of order h® for a square net. It has already been
shown by Gerschgorin in 1930 [4] that the discretization error, by which
is meant the difference between the exact solutions of the differential equation
and of the system of difference equations, is of order h? for a'rectangular
region if the 5-point formula is applied and if the solution is four times
differentiable, including at the contour. Analogously it can be shown that
for the 9-point formula the discretization error in a rectangular region is
of order h® provided the eighth order derivatives exist everywhere. Thus
the 9-point formula yields results of the same accuracy with a much smaller
mesh length than the 5-point formula. This means both a smaller system
of equations and a larger convergence rate which outweighs the disadvantage
of the more complicated form of the 9-point formula. In this paper convergence
rates are compared for point iteration methods (Jacobi, Gauss-Seidel and
overrelaxation). It is shown that although the matrix of the 9-point formula
does not possess property A, the most favourable relaxation factor and
the convergence rate for small h and for a rectangular region can be
calculated by an analytic method, based on separation of variables. Our
result, which is confirmed by numerical calculations, differs from an
earlier result obtained by Garabedian [5].

The authors wish to acknowledge useful discussions with Mr. H.J. Burema,

2. The 5-point and 9-point formulas and their truncation ervors.

In order to replace the two-dimensional Laplace equation by a difference
equation, we introduce a rectangular net with mesh lengths h and k in x-
and y-direction. We present the difference equations for regular points of
the region, that are points of which all neighbouring points, whose function
values also appear in the difference equation, lie within the region or on its
boundary. The derivation, which makes use of Taylor series expansions
for the exact solution u(x, y) of Laplace's equation, has been given in detail
in the authors' report [6].

When U(x,y) denotes the solution of the system of difference equations,
then the 5-points formula is
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. k2 h?
Ulx, y) = ————— {U(x+h.y)+U<x-h,y)} +———{U<x,y+k>+u<x,y-k>}
2(h? + k%) 2(hZ+ k%)
(2.1)
1 a*u(x,y)
with the truncation error - =+ h%k?% ———

24 9xt

The 9-point formula is

U(x,y)=%{U(x+h, y+k) + Ux-h, y+k)+ Ulx-h, y-k)+ U(x+h, y-k)}

. h2-5k2{ : . 5h?-k?
- T—— U(X+h,y)+U(X-h.y)} +~—-—~—-—~{U(x,y+k)+U(x,y-k)}
10,2, 2 10 242
(2.2)
6
1 9 u(x,y)
with the truncation error h2k?(h? - k%) ———
400 axs

In the case h = k the 9-point formula becomes

U(x,y)=?10—{U(x+h, y+k) + U(x-h, y+k) + U(x-h, y-k) + U(x+h, y-k)}

+ % { U(x+h,y} + Ulx-h,y) + U(x,y+k) + U(X,y-k)} (2.3)
‘ . L tulx,y)
with the truncation error - T(-)-()S—Oh T.

In the last case the truncation error is of smaller order than if h # k.

3. General rvemavks on the itevative method.

We now shall consider the Dirichlet problem for a rectangular region
with sides a and b in x and y-direction respectively. The net points have
coordinates

x =ph(p=1,2..., m-1), y =gk (g =1,2..., n-1)
while mh = a and nk = b.

Since all net points are regular points, the difference equation, given
by one of the formulas (2. 1) through (2. 3), completely replaces the differential
equation. The difference equation is solved by an iterative process which
generally can be written as

.U.(n+1)= HU(H) + k. (3.1)

U™ denotes the vector of which the elements are the values of U(x,y)
in the net points, obtained after n iterations. H is the square matrix of
order (m - 1)(n - 1) determined by the difference equation and the iterative
method chosen. Solution by iteration is employed since the matrix H is
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sparse. The vector k is due to the given boundary values. It enters into
the difference equation if this is applied to a point of which. one or more
of the neighbouring points are on the boundary.

If U is the exact solution of the difference equation, then

U=HJ + k ‘ (3.2)

which shows that the error v = U - U™ satisfies

v@l) = Hy® or y@ = Ly

A necessary and sufficient condition for convergence (i.e. lim v 7'=0)
n—c

with an arbitrary starting vector v is that 1im H" = 0. According to a

n
well-knowi theorem of matrix theory [7], this is the case if the spectral
radius AM(H) of H is smaller than 1. Since the elements of v(® will vanish
asymptotically as A , they will become smaller than € as soon as cA < €,
i.e. if n log A becomes smaller than a certain value,
The number of steps n is inversely proportional to log A. Therefore the
rate of convergence is defined by

R(H) = -log X(H) (3.3)

In the following sections we shall compare the convergence rates for the
5- and 9-point formulas if the Jacobi, Gauss-Seidel and overrelaxation
methods are applied.

4. The Jacobi method.

This method, also known as the method of simultaneous displacements,
consists of substituting the n- approximation at the right hand side of
the difference equation given in Sec.2. The n+1"® approximation is ob-
tained by using only values of the n "% approximation for all points of the
net.

The iteration formula is in the case of the 5-point formula, according
to eq. (2.1)

(n+1)

n 0 h2 n
U (x,y) s ——— {U( )(X"'h,}’) + U )(X-h:y)} "'m {U()(X:Y"'k)"'

2(h%+k?)
+ U(n)(x,y-k)} (4.1)

or, written in matrix form,

U(n+1) - B(5) U(n) + k,

B® being a symmetric matrix,
The eigenvalues of B' satisfy the equation

uU = B® U,

which agrees with the difference equation

k2 he ‘
U(x,y) =————{U(x+h,y) +U(x -h,y) } + ———— 4 U(x,y +k) + U(x,y - k)
uU(x Y), 2(h2+k2){ X | y bd y} 2(h2+k2){ X,y X,y }

(4.2)
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provided the values of U for points on the boundary are taken equal to 0.
For the 9-point formula we can derive from eq. (2.2) a Jacobi matrix
B and a difference equation which is comparable to eq. (4.2), viz.

uU(x,y) = {U(x+h y+tk) + U{x-h, y+k) + U{x-h, y-k) + Ux+h, y- k)}
L h h?- 5k2 | o0 -k

T NCIT) {U(x +h,y)+U(x -h, y)} 03 3 U(x,y+k)+U(x,y-k)}

h? + k? h*+k (4.3)

Egs. (4.2‘) and (4.3) can be solved by aid of separation of variables,
that is by putting

U(x,y) = X(x) Y(y).

The result (see [ 6] for details of derivation) is that the eigenvalues of
eq. (4.2) are given by

K® or | h? ar
u = h2+k2cos m cos i (4.4)
and those of eq. (4.3) by
) ( b o 5k% - h? - 5h% - k? o
u=+=1 cos cos = + COS =~ + ——— CcOos = | . (4.5)
> L S (RS <
In both cases'p = 1,2,.,,m~-1and q = 1,2,.., n-1,

It follows from eq. (4. 4) that the spectral radius of B® is obtained by
putting p = q = 1

2 2
5) 7h h 7k
ABO) = 5 cos — + ———5cos - (4.8)
n +¥ h"+k
which is smaller than 1. For large values of m and n the convergence rate
becomes
R(B ®) = 5 > <~— +-—> . (4.17)
h +k

The spectral radius of B® is also obtained for p = q = 1, provided
1/\/_< h/k < V5. In that case the convergence rate is

g h¥k?
R(B®) = ¢ T <—— +—_> (4.8)
+

Ifh >k \/—5 all terms in eq. (4.5) become negative if cos qn/n istaken
negative. The eigenvalue with the largest absolute value occurs for p = 1,
g =n - 1 and is equal to

) 6h? - 6k2 . -5k 52 - k2 \ 7°
1l 14—
n? + k2 h + k% / 2m? h® + k2 2n?




On the 9-point formula for Laplace's equation 191
The terms independent of m and n are

6h? - 6k? ) 2n® - 10K
= -l ———— % = -5 ——
n?+ k2 2 nf+ K
which is smaller than -1, .

Convergence is here only possible if m and n are not too large.

The same reasoning holds for k > h \V 5.

The conclusion is drawn that if the ratio of the mesh sizes is larger
than V5, convergence with the 9-point formula is not guaranteed and is
certainly absent if h and k are sufficiently small. In that case the operator
(2.2) is no longer positive, which means that if it is applied to positive
U-values, the left hand side may become negative. This is inadmissible
for a solution of Laplace's equation.

If the ratio of the mesh sizes is smaller than \/5, the Jacobi procedure
is convergent and gives even faster convergence in the case of the 89-point
formula than for the 5-point formula, since R(B®) = 1.2 R(B®),

5. The Gauss-Seidel wmethod.

In this method, which is also known as the method of successive dis-
placements, the (n+1)® approximation for an element in the vector U is
used in the further calculations as soon as it is known. The properties
of the method then depend upon the order of the elements in the vector.
We shall take these elements in 'reading' order with x increasing to the
right and y increasing- in downward direction,

If we divide the Jacobi matrix B, of which the diagonal entries are all
zero, in the lower and upper ftriangular matrices L and R, the equation
of the Gauss-Seidel method becomes in matrix form

U(ﬂ+1) = L U(I'H'l) + R U(H) + k

or U™ =a.n)tRrRU®+a-n)M k. ©- 1)
Convergence is determined by the spectral radius of
c=(I-L)"'R
which should be smaller than 1.
5-point formula.
The eigenvalues of ¢® = (I—L)'1 R satisfy the equation
w0 = ¢® U or u(I-L)U = R U.
The last form corresponds to the difference equation (see eq. (2.1))
k? h?
uy Uxy) -——5 Ulx-hy) - —5—— Ulx,y-k) ; =
2(h“+k") 2(h” +k")
12 B2 ‘
m U(x+h,¥) +mU(x,y+k). (5.2)
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The method of seperation of variables is again applied for the solution
of eq. (5.2), see [6]. The result is, as is well-known [1,2], that the
eigenvalues are the squares of the eigenvalues of the matrix B(®, The
convergence rate for large values of m and n is given by

h2%k? . 1 1
R(C®)) = ——— 7 — (5.3)

h2 + k2 a2 b2

and hence is twice that of the Jacobi method with the 5-point formula,
9-point formula.
The difference equation for the iteration is

)

U D, y) =k {U‘“) (x+h, y+%)+U® (x-h, y+0) + U™ x+h, y-k) +

’ h? - 5k
1 = 1
O oy b - T 0 ) 0 o) } o
h*+ k
5h? - k2
1 { -(n) (n+1)
t ;s U (X,Y“‘k)““U (X;}"k)}-
10 h2+k2

This fixes the matrices L, R and C(g) = (I-L)_1 R and hence, the e-ciuation
for the eigenvalues and eigenvectors of C® pecomes

) ) | h? - 5K . 5h%-k?
“{U(X’Y)_EU(X+h’y—k)'§6U(X"h’y'k)+1_6mU(x‘h’y)‘Tdm
(5.4)

U(x y-k)} =L U(x+h, y+k) + == U(x - h, y+k) - iiika(xm y)+?—ki——k—2
? 20 20 ’ lohz + K2 ’ 02 + k2

U(x,y tk).

Separation of variables, see [6] for details, leads to the following cubic
equation for z = Vu

252" -eq(e2f-10£+20)z2 - (eFel+elf?- e2f2+8elf - 1665)z - elesf =0 (5. 5)
where e, = cos pr/m, ey=cos qn/n, f=(5k*- h?)/(n? + k2). (5.6)

The roots of this equation have been investigated numerically by aid of
the Telefunken TR4 computer of Groningen University for various values
of the parameters f, e; and ey;. The parameter f is restricted to the in-
terval (~1, 5) since h and k are real. It was found that |z]| = 1 only occurs
if at least one of the quantities e; and eg is equal to = 1. Since, however,
e; and eg are in absolute value always smaller than 1, the same holds for
]z[, which means that there is always convergence.

The spectral radius of c® again occurs for p = q = 1. For large values
of m and n, we can obtain the deviation of z from 1 by substituting in
eq. (5.95)

z=1+58z, e =1-72/2m? eg=1 - n%/2n%
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Neglecting higher powers of §z, 1/m? and 1/n?, we find

3 b’k 11
oz = -—-————7r2 —_t— .
5 h? + k2 a2 pl

Hence, the convergence rate is

h%k® 1
ric?) = % 72 — +——> (5.7)
2yk \

which again is twice that of the Jacobi method in those cases where the
latter method converges.

6. The overvelaxation method.

The overrelaxation method consists, in fact, of an extrapolation at each
step of the result obtained by the Gauss-Seidel method. In matrixform

U(11+1) - U(n) +ow { fj’(n’rl)_ U(ﬂ) }

where U ger;

is the Gauss-Seidel approximation (5.1)
U(n+1) = L U(n+1)+ R U(n) + k.

U@+ Y in the right hand side of the latter equation is the vector of values
obtained from the overrelaxation method. Elimination of U®*YV yields

V=, u® + K (6.1)

where C, = (I—wL)'1 {(1-w)I+wR} and ki = (I—wL)_1 wk. (6.2)
For convergence of the iteration the spectral radius of C, should again
be smaller than 1.

5-point formula.

The eigenvalues of C  satisfy the equation
w(I-wL)U = {(1-w)1+wR} U

or, written as difference equation for the 5-point formula (see eq. (2.1)k

K n?
U(x,y) - ——  U(x-h,y)+——Ulx,y -k =
8 { Byio e {2(h2+k2) x-h.y) 2(h®+ k%) Goy )}}

k2 h?
(1l -w) Ux,y) +w {TTU(x+h,y) —_— U(x, y+k} (6.3)
2(h"+k") 2( + K’ }
Separatlon of variables leads to a quadratic equation in z = Vpu, viz
zz-wgz+w—l—0 (6.4)
2
where g =“k_cos -p—nir- + B cos gn[ (6.5)

h? + K n® + k2
Further invesfigation of this case yields the well-known [1,2] results
2(1 -V1-g} .
W = and AM(C™) = w -1, (6.6)

opt X 2 w opt
8]

where g is the value of g when p = g = 1 is substituted in eq. (6.5). For
large values of m and n the results become
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5y = = 3y _
MCP)) = 1-t, wo = 2-t R(CJ) =t

27hk

where { = —/———
Vhi+x?

Hence, the convergence speed is much better than in the case of the
Gauss-Seidel method. If one takes m equal to n, R(C®) = 24/n, while
R(C®)) = 72/n?, w

9-point formula.
The equivalent to eq. (6.3) becomes

20(u+w-1) Ulx,y) -

5h% - k2 h?_-5k2

-,uw{U(x+h, y-K)+Ulx-h, y-k)+2———U(x,y - k) - 2———U(x - h,y) } =
h?+k? h?+ k2
5h? - k? h?-5k?

w{U(x+h, g+k)+U(x-h, y+k) +2———TU(x,y +k) - 2———U(x +h, y) }
h?+ k2 h?2+ kZ2

Separation of variables now leads to a quartic equation in z = Vi, see
[6], which is

252% -we,(welf - 10£ +40)2° - (Wlelel +wei?-wlelt?+ 8uwlelt- 16w e} - 50w+50)z” -

_wegwe?f - 10wt + 10f + 40w - 40)z + 25(w-1)*=0. (6. 8)

The roots of this quartic have been investigated numerically for f = 2
{h = k) on the Telefunken TR 4 computer. The results are shown in fig.1.
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For e; and e; near 1, the roots appear to depend approximately only on
the sum e; + ep. In fig.1 [u| is given as a function of w(l < w< 2) for
the values e; + eg = 2, 1.95, 1.90, 1.85 and 1.80. The drawn lines give
real roots, the dotted lines give the moduli of complex roots. It is seen
that there are either 2 or 4 complex roots.

The values of [,uf for the complex roots are for values of ey + ey between
1.8 and 2 nearly independent of e; + eg. For smaller values of e; + eq
the larger of the two |u| - values corresponding to complex roots, decreases.

Hence, it can be concluded that w = wop is equal to the w-value of the
point of intersection of the upper dotted line with the drawn line corre-
sponding to the value of e; + ey, with e; and ey, obtained by taking p = 1,
q = 1. For that value of e; + e, one pair of complex roots and one real
root have the same modulus, while the other real roof has a smaller mod-
ulus. Smaller values of e; + eq lead to smaller values of [,ul

We now shall investigate w,, for large values of m and n. At w = wepy
the roots corresponding to the largest values of e; and ey that can occur,
are z = r, z =8, z = ret™ and z = re™™ with r > s. The quartic (6.8)
then should be of the form

(z - r)(z - sz - rei‘p)(z - re'i@) =0

or, putting r(l + 2 cos ¢) = t,

z4 - (s+t)zB+t(r+s)z2 -r(x-2 +st)z+r3s = 0. (6.9)

We identify corresponding coefficients in (6.8) and (6.9) which yields

we, (wWe?f - 10f + 40) = 25(s + t)

2.2.2 22f2

2
W €1€9 + W €

- wPelf? + Buwlelf - 16w%3 - 50w + 50 = -25t(r + s)
(6.10)
wey(we?f - 10wf + 10f + 40w - 40) = 25r(r? + st)

(w - 1)2 = r3g

These are 4 equations for the four unknowns r,s,t and w(= w,,).
It is seen from fig. 1 that for e; = 1, ey = 1, the following solution holds
wopt=2, r =1, s =1,
55 - 16f
while the system of equations yields t = 55

We now try to find the solution of the system for values of e; and e,
which are slightly smaller than 1. This appears possible by making the
following expansions

~N
e, =1 -6
82 = 1 - 62
w o= 2-A;\ady +Bo, + Agbyt Ags, t .....
N v (6.11)
r = l_Bl Q’Ol +B§2 + B26]_ + B362.+ ..... 1
S =1—CIVC¥61+B§2+0261+C352+ .....
55 - 16f
t =—55— - D, Vas; + Bb, + Dyé; + Dby + ..... .

whence it will be clear that only the ratio @/B (and not o and B themselves)
is of importance.
These expansions are substituted in egs. (6.10). Identification of the
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coefficients of V as, + 362 yields the system

2A, (20 - 3f)

24, (55 ~161) = B, (55 - 16) + C,(55 - 161) + 50D,

2A, (60 -13f) = 2B,(65 - 8f) + C,(55 - 16f)™+ 25D,
2A, = 3B, +C;

25C, + 25D,

(6.12)

This homogeneous system has a matrix of rank 3 and the ratio of A,
By, C; and D, can be determined. The result is

5+ 7t 275 + 85f - 48f°
—_— Ay, Dy o= Ay,
5+ 4f 5+ 4f 50(5 + 4f)

1
Bl :_2_.
(6.13)
That Aix is an independent parameter is due to the fact that the terms
with V @8, + Bég in w,r,s and t are not yet affected by the change in e:
and e,. This means that one of these terms may be chosen with an ar-
bitrary magnitude. )
Identification of the coefficients of 8, gives the system
A%fa + 2A,(20 - 3f) - 8f = 25C, + 25D, )
A% o(15 - 8f) +2A,(55 - 16f)+8f2 +8 = 25B; Dy + 25C; D a+By(55 - 16f) +
‘ " Cq(55 - 16f)+50D,
2
75B;a+BC 55 - 16f) + 25B;Dja +
25C Do+ 2Bg(65 - 8f) + Co(55 - 16£) +25Dg

3B%a+3B1C1a+ 3By +Co J
(6.14)

Multiplication of these equations by -1,1, -1 and 25 followed by addition
yields

AZa(40 - 9£) + 2A,(60 - 13f) - 8f

+

A%a + 2A2

8> + 16f + 8 = B,C, (20 +161). (6.15)
Identification of the coefficients of 6, yields’
A2£B+2A,4(20 - 3f) +16f- 80 = 25C; + 25D, )

AZB(15 - 8£) + 2A 3(55 - 161) - 8% + 641 - 120 = 25B, D, +25C, D18+ B(55 - 16£) +
+C4(55 - 16£) +50D;
AZB(40 - 9£)+2A 4(60 - 13£) + 16f - 80 = 75B38 +B1C1B(55 - 16£) +25B1D1f +
+25C, DB +2B5(65 - 8f) +C465 ~ 16£) + 25D

A%B + 2A, = 3B%B + 3B,C1B + 3B3 + Cj. ( /)
. 6.16

The same linear combination as calculated for the system (6.14) now
gives

-8f% + 32f +40 = B;C,B(20 + 16¢), ' (6.17)
Comparison of egs. (6.15) and (6.17) yields for the ratio «/8

1 +¢
(6.18)

(o]
B 5 -1f
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Since -1 < f <5 it is clear that this ratio is always positive as required
in (6.11).
BEq. (6.15) gives
(1+1)°
B,C;a = 2——o.
5 + 4f

Using the results obtained in (6.12) we may write also

\ (1 +10)%5 + 4f)
Alaf = 8

(5 + 38)(5 + )

Substitution in (6.11) yields

2(1 +£)(5 +41) —
Wop %2-2\ [ \/(T+f)61+(5-f)62+0(61) +0(8,)
(5 +3f)(5 + 7f)

2(1 +£)(5 + 31) ]
_— (1 +1)8, +(5-1)6, +0(6,) + 0(5,)
(5 +4£)(5 + Tf) \/7 ' 2 >

2(1 +£)(5 +31)

R(CY) =2 ——-——.—~’\/(1+f)51+(5-f)’521+0(‘51) + 0(5)
(5 +4£)(5 +71)

MCED) = | [pay=r2=1-2

With regard to the factor 5 + 7f which becomes negative for f < - %,
we may remind the reader that it was assumed that r > s since otherwise
the foregoing considerations do not hold. From (6.11) it is clear that the
condition r £ s is equivalent to B; < C; if terms of order 6; and 6y are
neglected. It follows from (6.13) that B, < C, again is equivalent to f > 0.

Hence, the results obtained are valid only for f > 0 or h £ kv5. Finally,
substituting o

h? - 5k% . .
f=-—— 64 =1 -cos — and 63=1 - cos—
n + K2 m n
the results can also be written as
0 h? + 25k 11\
2"67Thk . T Mp—

(h? +10k2)(H+ Kk%)(-h? +20k2) 2 pl

w
opt
a b

0 h? + 10k? 1 1
R(CS”) 12 7hk . _+_>

(h? +25k2)(b? +k2)(-h® +20k?) a® b’

For a square (a=b) with equal meshsizes (h=k) we now derive results
for w,,; and R containing errors 0(h®) instead of 0(h?) as would be the case
when using eq. (6.19).

Since then e; = ey, = e, we make the expansions

> (6.19)

e =1 -6 T

=2 - Ast+ A6 + As3/?

r=1 - B+ B + B"s2 L (6.20)
s =1 -Cé8t+ 6+ Cled?

t = g—g’ - D% + D'6 + D"5 /2
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The relations between A,B,C, and D follow from eq. (6.13) by taking f
equal 2 .

B =<5 A, C =% A and D = ==— A. (6.21)

Identification of the coefficients of § in the equations (6,10) leads to the
system (compare (6.14) and (6.16))

2A% + 28A' - 64 = 25C' + 25D
A% £ 46A' + 16 = 23B' + 23C' + 50D' + 25BD + 25CD
22A% + 68A" - 64 = 98B' + 23C' + 25D' + 75B% + 23BC + 25BD + 25CD

A%+ 2 = 3B'+ C'+ 3B%+ 3BC (6. 29)

Multiplication of these equations by -1,1, -1 and 25 followed by addition
yields 13BC = 36. . Hence A = 2,9928, B =1.2662, C = 2,1871, D = 1,16489,

Three other linear combinations of eqgs. (6.28) yield three relations
between the four unknowns A', B', C', D'. We eliminate D' and obtain
two relations for A', B' and C'. Multiplication of the equations by -2,
+1,0 and 27 and addition gives after substitution of the values obtained for
A,B,C and D

11A' - 26B' = 28.4211,
The last equation of (6.22) becomes
2A' - 3B' - C' = 4,1605.

The third equation between A', B' and C' is obtained from identification
of the coefficients of 6% in egs. (6.10). This gives the system
44A - 4AA' +28A'" = 25C"" + 25D"
-1B6A + 2AA' +4B6A" = 23B" +23C" +50D" -25BD'-25B'D -25CD'-25CD
84A - 44AA' + 68A" = 98B'" + 23C'" + 25D" -25B° -150BB'~25BCD
- 23BC!' - 25BD' - 23B'C -25B’'D - 25CD' -25C'D
sB" +c" -B® _3B%C - 6BB'- 3BC'- 3B'C.

n

- 2AA' + 2A"

Multiplication of the equations by 1, -1, 1 and -25 followed by addition
leads to

144 A = 75B%C - 25BCD + 52BC' + 52B!'C
or, after substitu‘tion of the values for A,B,C and D
19B' + 11C' = 41,5385,
Finally we find
At = 4,478, B' = 0.802, C' = 2.392,
With 6 = 72h?/2a? this gives the results

W =2 . 2.116 7h/a + 2.24 (7h/a)’ + 0(h?)

opt

MCP)= 1 - 1.791 ah/a + 1.60 (th/a) + 0(n°) (6.23)
R(C™)= 1.791 7h/a + o(h®).
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These results can be compared with the corresponding results for the
5-point formula as given by eq. (6.6)
Wopt  ~ 2 - 2 gh/a + 2(7Th/a)2 + 0(h®)
MC®) = 1 - 2 7h/a + 2(h/a)® + 0(h®) (6.24)
5
r(c”) 2 sh/a + 0(h3).

n

It may be noted thateq. (6.23) differs from a result obtained by Garabedian,
viz.

= - 2
W = 2 - 2.04 7th/a + 0(h°).

There are a number of assumptions in Garabedian's work which are
difficult to assess, but which apparently are not justified. It will be shown
in the next section that the experimental results are in agreement with our
results.

7. Numerical results,
First experviment.

The Dirichlet problem has been numerically solved for the square
0<£xg1, 0 £y £1 with boundary values taken from the function

u(x,y) = log {(x+l)2 + y2 },

which is a solution of Laplace's equation. The solution was obtained by
aid of the overrelaxation method with both the 5-point and the 9-point formula.
As soon as the solution obtained in two consecutive cycles differed less
than 1079 in all calculated points, the iteration was stopped. The values
taken initially at all regular points of the mesh were equal to 0. In both
directions the mesh lengths were taken equal to 1/30. For the 9-point
formula the discretization error was smaller than 109 since in this
accuracy the solution obtained, agreed with the values of the function u(x,y).

"The number N of cycles, which were performed before the iteration
stopped, was investigated as a function of the relaxation factor w and was
compared between the 5-point and the 9-point formulae. The results are
presented in fig.2. For the 5-point formula N is minimal for w = 1.810
and at this value there is clearly a kink in the curve. Formula (6.24)
gives for this case w = 1.812 with an error of order h® The exact formula
for w is given by eq. (6.6) and this yields w = 1.811. For the 9-point
formula the minimal value of N occurs for @ = 1.807, while the value
given by eq. (6.23) is v = 1.803 with an error 0(h®). Garabedian's formula
yields w_= 1.786, while eq. (6.23) yields v = 1.778 if in this formula the
term 0(h“) is also neglected. The agreement between the formulae (6.23)
and (6.24) and the experimental values of w is satisfactory. The exact
value according to eq. (6.8) is.w = 1.801.

The agreement with the convergence speeds R(C,) is less good. According
to egs. (6.23) and (6.24) the convergence speed of the 5-point formula is
larger than that of the 9-point formula, thus leading to a smaller value
of N for the 5-point formula. This is not confirmed by the experiment.
We therefore calculate the N values which correspond to the convergence
speeds of egs. (6.23) and (6.24). Assuming that the values of the solution
are of the order 1, it follows that the number N of steps is given roughly

by
W~ 10 %or NR(C,) ~ 9 In 10
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Fig.2, Number of iterationsteps 1o obtain accuracy of 1079, Overrelaxation method, First experiment.

Using for R(C,) the values of egs. (6.24) and (6.23) we find

5-point formula N ~ 99, (experimentally 122)
9-point " N ~ 115, ( " 110)

The reason for the discrepancy is that the results of eqs. (6.23) and
(6.24) are asymptotic results, that is they only hold after a large number of
steps. The experimental results give an average convergence rate during
N steps and this differs from the asymptotic value. This conclusion is
confirmed in the second experiment and there it is also shown that asymp-
totically the experimental and the theoretical convergence rate completely
agree.

Second experiment b,

The Dirichlet problem was numerically solved for the square 0 < x <1,
0 £ y <€ 1 with boundary values equal to 0. Since, in this experiment, we
are only interested in the rate of convergence, which is independent of the
boundary values, this choice is appropriate. The initial values at the regular
points of the mesh were all taken equal to 1. Mesh lengths in both directions
were 1/30, The solution approaches 0 and since the calculations were per-
formed in floating decimal point allowing a smallest number of 10-1%53, they
could be continued almost arbifrarily long.

The spectral radius of the matrix C, was calculated from the formula

o) 7 x | - 108 | 00 |
].Og R.(Cw) ~ E) : (7.1)
p

1) This experiment has been suggested by Mr.H.J.Burema, who also gave the derivation of formula (7.1).
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where x denotes the vector of the initial values at the regular points, The
vectornorm used is the norm, which is equal to the sum of the absolute
values of all components, In fact, formula (7.1) expresses that after suf-
ficient iterationsteps the norm of the vector decreases in each step by a
factor A. A derivation of the formula is given in [6].

Formula (7.1) has been evaluated for various values of n and p. For
increasing n and p the formula will give a better approximation for the
spectral radius A. This experimental value of A has been compared with
the theoretical value obtained from the equation for z = Vu (eq. (6.4) for
the 5-point formula and eq. (6.8) for the 9-point formula). The root of
this equation which is largest in modulus is the spectral radius ).

For w < w,, the final experimental value of AMC,) was usually reached
if n+pwas larger than 150. This value agreed with the theoretical wvalue,
For w > wgp the experimental value of w(C ) oscillated around the theoretical
value if n+p was taken sufficiently large, say 500. This is due to the fact
that then there are many complex eigenvalues of the matrix C  which all have
nearly largest modulus. These are not only the two complex roots of
largest modulus givenby eq. (6. 8), but also complex roots of the same equation
for smaller e; and ey, which correspond to other p and q (see eq. (5.86))
and which roots have also the same modulus according to fig.1.

In all cases the experimental value of A(Cw) obtained for small n and p
is larger than the final wvalue. This means that the convergence rate at
the beginning of the iteration is smaller than its asymptotic value, In par-
ticular this is true for the 5-point formula, which agrees with the fact
that in the first experiment the number of iterations necessary for obtaining
a certain accuracy was larger than would be expected from the egs., (6.23)
and (6.24).

Pig.3 gives the spectral radius as function of the overrelaxationfactor
w for both 5-point and 9-point formula (h = 1/30).

1.0
[W] §\§ S.peint
/
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Q{pomt\\
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1 11 1.2 13 14 1.5 16 17 18 1.9 20 2.1

Fig.3. Spectral radius of Cu for unit square and h = k = 1/30,
Thivd experiment.

A final experiment has been conducted with regard to the maximal dis-
cretization error in the field. It has been shown by Gerschgorin [4] that
if the fourth partial derivatives are bounded, the discretization error for
the 5-point formula decreases as h? if h is the mesh size in both directions.
In the same way it follows that, with partial derivatives up to the eighth
order bounded, the discretization error decreases as hS.

Since the discretization errors were very small for the harmonic function
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taken in the first example, we now took as harmonic function

u(x,y) = e

cos 3y.

Table 1 shows the results for the maximal discretization error in the field

Table 1

The maximal discretization error in the field as function of h for

the 9-point formula

1/4 1/6 1/8 1/10 1/16

error

6400.10°8 | 578,107 | 99.1078 | 28,108 | 2.1078

The error is proportional to h6, which is in agreement with the theory,

as a function of h for the 9-point formula, This error is defined as the
largest difference in absolute value between the exact harmonic function and
the exact solution of the difference equations occurring somewhere in the
field. It is clear from these results that the discretization error indeed

decreases as hS8,
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